Shikita
2019-02-25 22:03:54
2019.3.3 update:修改了证明的格式,给模板代码加上注释
2019.3.3 update:加上了一道例题讲解
2019.3.3 update:加上了latex
给定一个有向图,给定起点S,终点T,要求在所有从S到T的路径中,必须经过的点有哪些(即各条路径上点集的交集),称为支配点。简而言之,如果删去某个点(即支配点),则不存在一条路径能够使S到达T。由支配点构成的树叫做支配树
假设下图为给定的有向图
支配树是一颗由起点S为根的树,根到树上任意一点路径经过的点都是它的支配点。 对于每颗子树,都符合上述性质(即子树内一点到该子树的根路径经过的点都是该子树的根的支配点)
学会构建dfs树,对于dfn序有简单的了解
对于树上两点路径有初步的认识,知道LCA的概念
知道带权并查集的合并方法(合并子树时需要使用)
1:
2:
3:
4:完全祖先:不包含自身的祖先节点
5:完全后代:不包含自身的子节点
关于
若
证明:对于树上两点的路径,必然存在一个深度最小的点,使得两点路径必然经过该点。可以形象理解为一个爬树的过程,即从一个点出发,慢慢向上爬,必然访问到一个最高点后再慢慢向下走,最终访问到另外一个节点,那么那个最高点就可以形象地理解为这两个点的LCA。
对于一个节点U,存在V能够通过许多点(不包含V和U)到达点U
且对于任意i都有
简而言之
1:半支配点是唯一的(但是支配点可以有多个)
证明:根据半支配点的定义,因为是路径中节点的最小值,所以只有一个
2:对于任意点w,它的半支配点必定是它在
证明:假设w在dfs树上的父亲节点为
且存在一条路径
又根据dfs树的性质,存在某一节点
3:对于任意节点
证明:根据上述性质,我们可以证明
假设我们已经得到了一条从起点
4:假设 存在
证明: 设存在某一x是
则必然存在一条从s到v且不经过x的路径。我们再找到一条从v到w的路径,将这两条路径连接起来,我们就得到了一条从s到w不经过x的路径。
因此
对于任意点
通过已知
令集合P={
令元素
if(sdom[k]==sdom[x]) idom[x]=sdom[x]
else idom[x]=iodm[z]
证明(不好意思又是来自tarjan老爷子的论文,我努力简化了一下,尽量不违背原文意思,毕竟不能误人子弟):
若需要证明上述结论,只需要分别证明两个结论
考虑
考虑任意一条从s到w的路径p。设x为这条路径上最后一个满足
否则,设y是路径上x之后,满足
设路径
否则如果有
这一观点加上半支配点的定义,成功得到了
1:先对这张图进行一遍dfs,求出dfn
2:求出sdom
根据sdom的上述性质,我们可以通过根据dfn大小从大到小遍历,那么我们查询的都是祖先链,根据定义我们可以很轻松地求出sdom
3:保留dfs tree 上的节点和边,那么显然,原图变为了一个DAG
然后再将点丢到支配树中,在做这个操作之前,我们需要先求出该点祖先链中sdom的最小值,然后这个点会成为一颗子树的根,通过带权并查集维护各个子树并连接。最后通过sdom求出idom,算法就完成了
支配树模板题
题意:给定一张有向图,求从1号点出发,每个点能支配的点的个数(包括自己)
#include<bits/stdc++.h>
using namespace std;
using namespace std;
inline int read()
{
int x=0;
char c=getchar();
bool flag=0;
while(c<'0'||c>'9') {if(c=='-')flag=1;c=getchar();}
while(c>='0'&&c<='9'){x=(x+(x<<2)<<1)+ c-'0';c=getchar();}
return flag?-x:x;
}
const int N=2e5+10;
int n,m,ans[N],dfn[N],id[N],tot,dep[N];
int ffa[N],fa[N],semi[N],val[N],du[N],ff[25][N];
queue<int>q,q1;
vector<int>cg[N];
struct node
{
vector<int>edge[N];
inline void add(int u,int v){edge[u].push_back(v);}
}a,b,c,d;
inline void dfs(int x,int f)
{
dfn[x]=++tot,id[tot]=x,ffa[x]=f,c.add(f,x);
for(int i=0;i<a.edge[x].size();++i) if(!dfn[a.edge[x][i]]) dfs(a.edge[x][i],x);
}
inline void dfs_ans(int x)
{
ans[x]=1;
for(int i=0;i<d.edge[x].size();++i) dfs_ans(d.edge[x][i]),ans[x]+=ans[d.edge[x][i]];
}
inline int find(int x)
{
if(x==fa[x]) return x;
int tmp=fa[x];fa[x]=find(fa[x]);
if(dfn[semi[val[tmp]]]<dfn[semi[val[x]]]) val[x]=val[tmp];
return fa[x];
}
inline int LCA(int x,int y)
{
if(dep[x]<dep[y]) swap(x,y);
int d=dep[x]-dep[y];
for(int i=20;i>=0;i--) if(d&(1<<i)) x=ff[i][x];
for(int i=20;i>=0;i--) if(ff[i][x]^ff[i][y]) x=ff[i][x],y=ff[i][y];
return x==y?x:ff[0][x];
}
inline void tarjan()
{
for(int i=n;i>=2;--i)
{
if(!id[i]) continue;
int x=id[i],res=n;
for(int j=0;j<b.edge[x].size();++j)
{
int v=b.edge[x][j];
if(!dfn[v]) continue;
if(dfn[v]<dfn[x]) res=min(res,dfn[v]);
else find(v),res=min(res,dfn[semi[val[v]]]);
}
semi[x]=id[res],fa[x]=ffa[x],c.add(semi[x],x);
}
for(int x=1;x<=n;x++) for(int i=0;i<c.edge[x].size();++i) du[c.edge[x][i]]++,cg[c.edge[x][i]].push_back(x);
for(int x=1;x<=n;x++) if(!du[x]) q.push(x);
while(!q.empty())
{
int x=q.front();q.pop();q1.push(x);
for(int i=0;i<c.edge[x].size();++i) if(!--du[c.edge[x][i]]) q.push(c.edge[x][i]);
}
while(!q1.empty())
{
int x=q1.front(),f=0,len=cg[x].size();q1.pop();
if(len) f=cg[x][0];
for(int j=1;j<len;j++) f=LCA(f,cg[x][j]);
ff[0][x]=f,dep[x]=dep[f]+1,d.add(f,x);
for(int p=1;p<=20;p++) ff[p][x]=ff[p-1][ff[p-1][x]];
}
}
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++) fa[i]=val[i]=semi[i]=i;
for(int i=1;i<=m;i++)
{
int u=n-read()+1,v=n-read()+1;
a.add(u,v),b.add(v,u);
}
dfs(n,0);tarjan();dfs_ans(n);
for(int i=n;i>=1;i--) printf("%d ",ans[i]);
}
例题:灾难
题意:给定一个DAG,求如果删去一个点有多少个点会被影响(即灭绝)
分析:其实看明白了就是一道支配树板子题。因为每个点之间都存在依赖关系,如果删去某个点,对于任意一个原先有入度的点说,如果因此没有入度,那么它就死了,并且删除与它相连的边,然后重复迭代以上步骤直到没有点死去
然后我们把边反向然后观察可以发现:如果说删除了一个点后某个点无法连向原图中无入度的点(注意是原图中的入度,反图中就是出度),那么它就死了
但是对于原图中,存在某些点没有入度(即生产者,不依赖任何东西),那么我们只需要建一个超级源点把这些没有入度的点连接起来,然后跑网络流,那么那个点则为我们的起点,而题目也转换为模板题了
代码
#include<bits/stdc++.h>
using namespace std;
inline int read() { int x=0; char c=getchar(); bool flag=0;
while(c<'0'||c>'9') {if(c=='-')flag=1;c=getchar();}
while(c>='0'&&c<='9') {x=(x+(x<<2)<<1)+ c-'0';c=getchar();} return flag?-x:x;
}
const int N=2e5+5;
int n,m;
struct node {
vector<int>edge[N];
inline void add(int u,int v) {
edge[u].push_back(v);
}
} a,b,c,d;
int dfn[N],id[N],fa[N],cnt;
//dfn表示dfs序,id表示序号所对应的点,fa记录点u的父亲节点
void dfs(int u)
{
dfn[u]=++cnt;id[cnt]=u;
int len=a.edge[u].size();
for(int i=0; i<len; ++i)
{
int v=a.edge[u][i];
if(dfn[v])continue;
fa[v]=u;
dfs(v);
}
}
int sdom[N],idom[N],bel[N],val[N];
//sdom表示半支配点,idom表示支配点
//val[x]表示从x到其已经被搜过的祖先的dfn的最小值val[x]
//bel[x]表示并查集中的fa
inline int find(int x)
{
if(x==bel[x])return x;
int tmp=find(bel[x]);
if(dfn[sdom[val[bel[x]]]]<dfn[sdom[val[x]]]) val[x]=val[bel[x]];
//用sdom[val[x]]更新sdom[x]
return bel[x]=tmp;
}
inline void tarjan()
{
for(int i=cnt; i>1; --i)//在dfs树上遍历,从大到小
{
int u=id[i],len=b.edge[u].size();
for(int i=0; i<len; ++i)
{
int v=b.edge[u][i];
if(!dfn[v])continue;//不在dfs树上
find(v);
if(dfn[sdom[val[v]]]<dfn[sdom[u]]) sdom[u]=sdom[val[v]];
}
c.add(sdom[u],u);
bel[u]=fa[u],u=fa[u];
len=c.edge[u].size();
for(int i=0;i<len;++i)
{
int v=c.edge[u][i];
find(v);
if(sdom[val[v]]==u) idom[v]=u;
else idom[v]=val[v];
}
}
for(int i=2;i<=cnt;++i)
{
int u=id[i];
if(idom[u]!=sdom[u]) idom[u]=idom[idom[u]];
}
}
int ans[N];
void dfs_ans(int u)
{
ans[u]=1;
int len=d.edge[u].size();
for(int i=0;i<len;++i)
{
int v=d.edge[u][i];
dfs_ans(v);
ans[u]+=ans[v];
}
}
int du[N];
int main()
{
n=read();
for(int i=1;i<=n;++i)
for(int k=read();k;k=read(),++du[i])
a.add(k,i),b.add(i,k);
for(int i=1;i<=n;++i) sdom[i]=bel[i]=val[i]=i;
for(int i=1;i<=n;++i) if(du[i]==0) a.add(0,i),b.add(i,0);
dfs(0);
tarjan();
for(int i=1;i<=n;++i) d.add(idom[i],i);
dfs_ans(0);
for(int i=1;i<=n;++i) printf("%d\n",ans[i]-1);
}
这个算法的时间复杂度是O((
图片以及主要思路来源于tarjan的论文 (提取码:wnvy )