WeLikeStudying @ 2024-11-28 17:55:26
当我想打一个表格的时候,里面无法使用绝对值符号(因为有竖线)
|$x^2$|
|:-:|
的显示效果是: |
---|
但是
|$|x|$|
|:-:|
的显示效果却是: | $ | x | $ |
---|
by WeLikeStudying @ 2024-11-28 18:25:53
@ljy05 感谢!
by LionBlaze @ 2024-11-28 18:30:24
@cjrawa 谢谢!
by ducati @ 2024-11-28 18:40:47
怎么感觉 \vert
系列和 |
并没有很明显的区别……
$\mid x \mid$
$\lvert x \lvert$
$\rvert x \rvert$
$\vert x \vert$
$|x|$
by WeLikeStudying @ 2024-11-28 20:32:34
@ducati \vert
是俺制表用的。
| $f(x)$ | $\operatorname{d}f(x)$ | $\int f(x)\operatorname{d}x$ |
| :---------------------------------------------------: | :------------------------------------------: | :----------------------------------------------------------: |
| $x^a$ | $ax^{a-1}\operatorname{d}x$ | $\begin{cases}\frac1{a+1}x^{a+1}+C&a\ne -1\\\ln\lvert x\rvert +C&a=-1\end{cases}$ |
| $\sin x$ | $\cos x\operatorname{d}x$ | $-\cos x+C$ |
| $\cos x$ | $\sin x\operatorname{d}x$ | $\sin x+C$ |
| $\tan x$ | $\sec^2 x\operatorname{d}x$ | $-\ln\lvert \cos x\rvert +C$ |
| $\cot x$ | $-\csc^2x\operatorname{d}x$ | $\ln\lvert \sin x\rvert +C$ |
| $\sec x$ | $\tan x\sec x\operatorname{d}x$ | $\ln\lvert \sec x+\tan x\rvert +C$ |
| $\csc x$ | $-\cot x\csc x\operatorname{d}x$ | $\ln\lvert \csc x-\cot x\rvert +C$ |
| $\arcsin x$ | $\frac{\operatorname{d}x}{\sqrt{1-x^2}}$ | $\color{green}x\arcsin x+\sqrt{1-x^2}+C$ |
| $\arccos x$ | $-\frac{\operatorname{d}x}{\sqrt{1-x^2}}$ | $\color{green}x\arccos x-\sqrt{1-x^2}+C$ |
| $\arctan x$ | $\frac{\operatorname{d}x}{1+x^2}$ | $\color{green}x\arctan x-\frac12\ln(1+x^2)+C$ |
| $\operatorname{arccot} x$ | $-\frac{\operatorname{d}x}{1+x^2}$ | $\color{green}x\operatorname{arccot} x+\frac12\ln(1+x^2)+C$ |
| $a^x(a\ne 1)$ | $a^x\ln a\operatorname{d}x$ | $\frac{a^x}{\ln a}+C$ |
| $\log_ax(a\ne 1)$ | $\frac{\operatorname{d}x}{x\ln a}$ | $\color{green}\frac{x\ln x-x}{\ln a}+C$ |
| $\operatorname{sh}x=\frac{e^x-e^{-x}}{2}$ | $\operatorname{ch}x\operatorname{d}x$ | $\operatorname{ch}x+C$ |
| $\operatorname{ch}x=\frac{e^x+e^{-x}}{2}$ | $\operatorname{sh} x\operatorname{d}x$ | $\operatorname{sh}x+C$ |
| $\operatorname{th}x=\frac{e^x-e^{-x}}{e^x+e^{-x}}$ | $\operatorname{sech}^2x\operatorname{d}x$ | $\color{green}\ln(\operatorname{ch}x)+C$ |
| $\operatorname{cth}x=\frac{e^x+e^{-x}}{e^x-e^{-x}}$ | $-\operatorname{csch}^2x\operatorname{d}x$ | $\color{green}\ln(\operatorname{sh}x)+C$ |
| $\operatorname{sh}^{-1}x=\ln(x+\sqrt{1+x^2})$ | $\frac{\operatorname{d}x}{\sqrt{1+x^2}}$ | $\color{green}x\operatorname{sh}^{-1}x-\sqrt{1+x^2}+C$ |
| $\operatorname{ch}^{-1}x=\ln(x+\sqrt{x^2-1})$ | $\frac{\operatorname{d}x}{\sqrt{x^2-1}}$ | $\color{green}x\operatorname{ch}^{-1}x-\sqrt{x^2-1}+C$ |
| $\operatorname{th}^{-1}x=\frac12\ln\frac{1+x}{1-x}$ | $\frac{\operatorname{d}x}{1-x^2}$ | $\color{green}x\operatorname{th}^{-1}x+\frac12\ln\lvert x^2-1\rvert +C$ |
| $\operatorname{cth}^{-1}=\frac12\ln{\frac{x+1}{x-1}}$ | $\frac{\operatorname{d}x}{1-x^2}$ | $\color{green}x\operatorname{cth}^{-1}x+\frac12\ln\lvert x^2-1\rvert +C$ |
| $\frac 1{\sqrt{a^2-x^2}}$ | $\color{green}\frac{x}{(a^2-x^2)^{3/2}}$ | $\arcsin\frac xa+C$ |
| $\frac{1}{\sqrt{x^2\pm a^2}}$ | $\color{green}-\frac{x}{(x^2\pm a^2)^{3/2}}$ | $\ln\left\lvert x+\sqrt{x^2\pm a^2}\right\rvert +C$ |
| $\frac1{x^2-a^2}$ | $\color{green}-\frac{2x}{(x^2-a^2)^2}$ | $\frac1{2a}\ln\left\lvert \frac{x-a}{x+a}\right\rvert $ |
| $\frac{1}{x^2+a^2}$ | $\color{green}-\frac{2x}{(x^2+a^2)^2}$ | $\frac1a\arctan{\frac xa}+C$ |
| $\sqrt{a^2-x^2}$ | $\color{green}-\frac x{\sqrt{a^2-x^2}}$ | $\frac{x}2\sqrt{a^2-x^2}+\frac{a^2}2\arcsin\frac{x}a+C$ |
| $\sqrt{x^2\pm a^2}$ | $\color{green}\frac{x}{\sqrt {x^2\pm a^2}}$ | $\frac x{2}\sqrt{x^2\pm a^2}\pm\frac{a^2}2\ln\lvert x+\sqrt{x^2\pm a^2}\rvert +C$ |