3blue1green @ 2024-11-29 20:12:15
想知道这个代码为什么会RE和TLE
思路就是高斯消元,但系数最后才变为整数
求各位神犇解答
代码如下:
#include <bits/stdc++.h>
using namespace std;
int n, matrix[55][55];
bool isjie = 1, wu[55];
int sgn(int x)
{
if (x >= 0)
return 1;
else
return -1;
}
void simplify(int a[])
{
int gcd = abs(__gcd(a[1], a[2]));
for (int i = 3; i <= n + 1; i++)
{
gcd = abs(__gcd(gcd, a[i]));
if (gcd == 1)
return;
}
gcd *= sgn(a[1]);
for (int i = 1; i <= n + 1; i++)
{
a[i] /= gcd;
}
}
void times(int a, int num) // 将a行乘num倍
{
for (int i = 1; i <= n + 1; i++)
{
matrix[a][i] *= num;
}
}
void add(int a, int b) // 把a行加到b行上
{
for (int i = 1; i <= n + 1; i++)
{
matrix[b][i] += matrix[a][i];
}
}
void swap(int a, int b) // 把a行和b行交换位置
{
int temp;
for (int i = 1; i <= n + 1; i++)
{
temp = matrix[a][i];
matrix[a][i] = matrix[b][i];
matrix[b][i] = temp;
}
}
void print()
{
double a, b;
for (int i = 1; i <= n; i++)
{
a = matrix[i][n + 1];
b = matrix[i][i];
cout << "x" << i << "=";
printf("%.2f\n", a / b);
}
}
void solution()
{
int temp[n + 2], tmp, gcd;
for (int i = 1; i <= n; i++) // 化为倒三角形
{
while (matrix[i][i] == 0)
{
if (i == n)
{
isjie = 0;
wu[i] = 1;
break;
}
swap(i, i + 1);
}
if (!isjie)
continue;
for (int j = i + 1; j <= n; j++)
{
for (int k = 1; k <= n + 1; k++)
{
temp[k] = matrix[i][k];
}
times(i, -1 * matrix[j][i]);
times(j, temp[i]);
add(i, j);
for (int k = 1; k <= n + 1; k++)
{
matrix[i][k] = temp[k];
}
}
}
if (!isjie)
{
for (int i = 1; i <= n; i++)
{
if (wu[i])
if (matrix[i][n + 1])
{
cout << "-1";
return;
}
}
cout << "0";
return;
}
for (int i = n; i > 0; i--) // 化出解
{
gcd = sgn(matrix[i][i]) * abs(__gcd(matrix[i][i], matrix[i][n + 1]));
matrix[i][i] /= gcd;
matrix[i][n + 1] /= gcd;
for (int j = i - 1; j > 0; j--)
{
for (int k = 1; k <= n + 1; k++)
{
temp[k] = matrix[i][k];
}
times(i, -1 * matrix[j][i]);
times(j, temp[i]);
add(i, j);
for (int k = 1; k <= n + 1; k++)
{
matrix[i][k] = temp[k];
}
}
}
print(); // 输出
}
int main()
{
cin >> n;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n + 1; j++)
cin >> matrix[i][j];
simplify(matrix[i]);
}
solution();
return 0;
}