88分,最后一个超时了,还能怎么缩时间,大佬教教

P1217 [USACO1.5] 回文质数 Prime Palindromes

hellowcworld @ 2022-12-10 17:59:22

//两个函数,素数判定与回文数判定
#include<iostream>
#include<cmath>
#include<cstring>
bool book[100000000];
bool palin(int n);
using namespace std;
int main()
{
    int a,b;
    cin>>a>>b;
    memset(book,true,sizeof(book));
    book[0]=book[1]=false;
    for(int i=2;i<=sqrt(b);i++)//列出所有质数(埃及筛法),所有质数的倍数不可能是质数 
    {
        if(book[i])
        for(int j=2;j<=b/i;j++)
        {
            book[i*j]=false;
        }
    }
    for(int index=a;index<=b;index++)
    if(book[index]==false) continue;
    else if(index==9989900) break;
    else if(palin(index)) cout<<index<<endl;
    return 0;
}
bool palin(int n)//判断回文数,及数字反转后与原数字相等 
{
    int sum=0;
    int k=n;
    while(n!=0)
    {
        sum=sum*10+n%10;
        n/=10;
    }
    if(sum==k) return true;
    else return false;
}

by condfyll @ 2022-12-10 18:25:10

有一种通用而简单的优化程序的方法,它叫做打表。

int prime[779] = {
    5,       7,       11,      101,     131,     151,     181,     191,     313,     353,     373,     383,     727,
    757,     787,     797,     919,     929,     10301,   10501,   10601,   11311,   11411,   12421,   12721,   12821,
    13331,   13831,   13931,   14341,   14741,   15451,   15551,   16061,   16361,   16561,   16661,   17471,   17971,
    18181,   18481,   19391,   19891,   19991,   30103,   30203,   30403,   30703,   30803,   31013,   31513,   32323,
    32423,   33533,   34543,   34843,   35053,   35153,   35353,   35753,   36263,   36563,   37273,   37573,   38083,
    38183,   38783,   39293,   70207,   70507,   70607,   71317,   71917,   72227,   72727,   73037,   73237,   73637,
    74047,   74747,   75557,   76367,   76667,   77377,   77477,   77977,   78487,   78787,   78887,   79397,   79697,
    79997,   90709,   91019,   93139,   93239,   93739,   94049,   94349,   94649,   94849,   94949,   95959,   96269,
    96469,   96769,   97379,   97579,   97879,   98389,   98689,   1003001, 1008001, 1022201, 1028201, 1035301, 1043401,
    1055501, 1062601, 1065601, 1074701, 1082801, 1085801, 1092901, 1093901, 1114111, 1117111, 1120211, 1123211, 1126211,
    1129211, 1134311, 1145411, 1150511, 1153511, 1160611, 1163611, 1175711, 1177711, 1178711, 1180811, 1183811, 1186811,
    1190911, 1193911, 1196911, 1201021, 1208021, 1212121, 1215121, 1218121, 1221221, 1235321, 1242421, 1243421, 1245421,
    1250521, 1253521, 1257521, 1262621, 1268621, 1273721, 1276721, 1278721, 1280821, 1281821, 1286821, 1287821, 1300031,
    1303031, 1311131, 1317131, 1327231, 1328231, 1333331, 1335331, 1338331, 1343431, 1360631, 1362631, 1363631, 1371731,
    1374731, 1390931, 1407041, 1409041, 1411141, 1412141, 1422241, 1437341, 1444441, 1447441, 1452541, 1456541, 1461641,
    1463641, 1464641, 1469641, 1486841, 1489841, 1490941, 1496941, 1508051, 1513151, 1520251, 1532351, 1535351, 1542451,
    1548451, 1550551, 1551551, 1556551, 1557551, 1565651, 1572751, 1579751, 1580851, 1583851, 1589851, 1594951, 1597951,
    1598951, 1600061, 1609061, 1611161, 1616161, 1628261, 1630361, 1633361, 1640461, 1643461, 1646461, 1654561, 1657561,
    1658561, 1660661, 1670761, 1684861, 1685861, 1688861, 1695961, 1703071, 1707071, 1712171, 1714171, 1730371, 1734371,
    1737371, 1748471, 1755571, 1761671, 1764671, 1777771, 1793971, 1802081, 1805081, 1820281, 1823281, 1824281, 1826281,
    1829281, 1831381, 1832381, 1842481, 1851581, 1853581, 1856581, 1865681, 1876781, 1878781, 1879781, 1880881, 1881881,
    1883881, 1884881, 1895981, 1903091, 1908091, 1909091, 1917191, 1924291, 1930391, 1936391, 1941491, 1951591, 1952591,
    1957591, 1958591, 1963691, 1968691, 1969691, 1970791, 1976791, 1981891, 1982891, 1984891, 1987891, 1988891, 1993991,
    1995991, 1998991, 3001003, 3002003, 3007003, 3016103, 3026203, 3064603, 3065603, 3072703, 3073703, 3075703, 3083803,
    3089803, 3091903, 3095903, 3103013, 3106013, 3127213, 3135313, 3140413, 3155513, 3158513, 3160613, 3166613, 3181813,
    3187813, 3193913, 3196913, 3198913, 3211123, 3212123, 3218123, 3222223, 3223223, 3228223, 3233323, 3236323, 3241423,
    3245423, 3252523, 3256523, 3258523, 3260623, 3267623, 3272723, 3283823, 3285823, 3286823, 3288823, 3291923, 3293923,
    3304033, 3305033, 3307033, 3310133, 3315133, 3319133, 3321233, 3329233, 3331333, 3337333, 3343433, 3353533, 3362633,
    3364633, 3365633, 3368633, 3380833, 3391933, 3392933, 3400043, 3411143, 3417143, 3424243, 3425243, 3427243, 3439343,
    3441443, 3443443, 3444443, 3447443, 3449443, 3452543, 3460643, 3466643, 3470743, 3479743, 3485843, 3487843, 3503053,
    3515153, 3517153, 3528253, 3541453, 3553553, 3558553, 3563653, 3569653, 3586853, 3589853, 3590953, 3591953, 3594953,
    3601063, 3607063, 3618163, 3621263, 3627263, 3635363, 3643463, 3646463, 3670763, 3673763, 3680863, 3689863, 3698963,
    3708073, 3709073, 3716173, 3717173, 3721273, 3722273, 3728273, 3732373, 3743473, 3746473, 3762673, 3763673, 3765673,
    3768673, 3769673, 3773773, 3774773, 3781873, 3784873, 3792973, 3793973, 3799973, 3804083, 3806083, 3812183, 3814183,
    3826283, 3829283, 3836383, 3842483, 3853583, 3858583, 3863683, 3864683, 3867683, 3869683, 3871783, 3878783, 3893983,
    3899983, 3913193, 3916193, 3918193, 3924293, 3927293, 3931393, 3938393, 3942493, 3946493, 3948493, 3964693, 3970793,
    3983893, 3991993, 3994993, 3997993, 3998993, 7014107, 7035307, 7036307, 7041407, 7046407, 7057507, 7065607, 7069607,
    7073707, 7079707, 7082807, 7084807, 7087807, 7093907, 7096907, 7100017, 7114117, 7115117, 7118117, 7129217, 7134317,
    7136317, 7141417, 7145417, 7155517, 7156517, 7158517, 7159517, 7177717, 7190917, 7194917, 7215127, 7226227, 7246427,
    7249427, 7250527, 7256527, 7257527, 7261627, 7267627, 7276727, 7278727, 7291927, 7300037, 7302037, 7310137, 7314137,
    7324237, 7327237, 7347437, 7352537, 7354537, 7362637, 7365637, 7381837, 7388837, 7392937, 7401047, 7403047, 7409047,
    7415147, 7434347, 7436347, 7439347, 7452547, 7461647, 7466647, 7472747, 7475747, 7485847, 7486847, 7489847, 7493947,
    7507057, 7508057, 7518157, 7519157, 7521257, 7527257, 7540457, 7562657, 7564657, 7576757, 7586857, 7592957, 7594957,
    7600067, 7611167, 7619167, 7622267, 7630367, 7632367, 7644467, 7654567, 7662667, 7665667, 7666667, 7668667, 7669667,
    7674767, 7681867, 7690967, 7693967, 7696967, 7715177, 7718177, 7722277, 7729277, 7733377, 7742477, 7747477, 7750577,
    7758577, 7764677, 7772777, 7774777, 7778777, 7782877, 7783877, 7791977, 7794977, 7807087, 7819187, 7820287, 7821287,
    7831387, 7832387, 7838387, 7843487, 7850587, 7856587, 7865687, 7867687, 7868687, 7873787, 7884887, 7891987, 7897987,
    7913197, 7916197, 7930397, 7933397, 7935397, 7938397, 7941497, 7943497, 7949497, 7957597, 7958597, 7960697, 7977797,
    7984897, 7985897, 7987897, 7996997, 9002009, 9015109, 9024209, 9037309, 9042409, 9043409, 9045409, 9046409, 9049409,
    9067609, 9073709, 9076709, 9078709, 9091909, 9095909, 9103019, 9109019, 9110119, 9127219, 9128219, 9136319, 9149419,
    9169619, 9173719, 9174719, 9179719, 9185819, 9196919, 9199919, 9200029, 9209029, 9212129, 9217129, 9222229, 9223229,
    9230329, 9231329, 9255529, 9269629, 9271729, 9277729, 9280829, 9286829, 9289829, 9318139, 9320239, 9324239, 9329239,
    9332339, 9338339, 9351539, 9357539, 9375739, 9384839, 9397939, 9400049, 9414149, 9419149, 9433349, 9439349, 9440449,
    9446449, 9451549, 9470749, 9477749, 9492949, 9493949, 9495949, 9504059, 9514159, 9526259, 9529259, 9547459, 9556559,
    9558559, 9561659, 9577759, 9583859, 9585859, 9586859, 9601069, 9602069, 9604069, 9610169, 9620269, 9624269, 9626269,
    9632369, 9634369, 9645469, 9650569, 9657569, 9670769, 9686869, 9700079, 9709079, 9711179, 9714179, 9724279, 9727279,
    9732379, 9733379, 9743479, 9749479, 9752579, 9754579, 9758579, 9762679, 9770779, 9776779, 9779779, 9781879, 9782879,
    9787879, 9788879, 9795979, 9801089, 9807089, 9809089, 9817189, 9818189, 9820289, 9822289, 9836389, 9837389, 9845489,
    9852589, 9871789, 9888889, 9889889, 9896989, 9902099, 9907099, 9908099, 9916199, 9918199, 9919199, 9921299, 9923299,
    9926299, 9927299, 9931399, 9932399, 9935399, 9938399, 9957599, 9965699, 9978799, 9980899, 9981899, 9989899};

数组 prime 内为一亿以内的所有回文质数。


by Ruiqun2009 @ 2022-12-10 18:28:24

不是直接 miller-rabin判断素数+构造回文数就可以了吗

带上蒙哥马利取模器就 24ms


by Ruiqun2009 @ 2022-12-10 18:30:35

时间复杂度还是 \Theta(\sqrt{n}\log^{3}n)


by Ruiqun2009 @ 2022-12-10 18:31:05

而且不用打表


by condfyll @ 2022-12-10 18:34:54

@Ruiqun2009 %%%


by Ruiqun2009 @ 2022-12-10 18:36:06

@JerryCKB 这里


by condfyll @ 2022-12-10 18:48:30

@Ruiqun2009 确实比打表快(学到了


by hellowcworld @ 2022-12-10 20:21:16

@JerryCKB 请问打表一般什么思路,是用fstream把结果保存文档里再使用吗


by condfyll @ 2022-12-10 22:30:03

@hellowcworld 是这样(不过一般来说题目都有代码长度限制


by gghack_Nythix @ 2022-12-14 15:24:53

有个办法,打表发现他最大只有9989999,那么枚举如果当前i >= 10000000直接return 0

虽然最慢220ms


| 下一页