递归加高精度超时求助

P1255 数楼梯

homi @ 2023-03-08 21:11:07

#include<bits/stdc++.h>
using namespace std;
int n,len=1;
int f[5010][5010];
int work(int k)
{
    if(k==1)return 1;
    if(k==2)return 2;
    f[k][1]=work(k-1)+work(k-2);
    return f[k][1];
} 
int main()
{
    cin>>n;
    f[1][1]=1;
    f[2][1]=2;
    for(int i=3;i<=n;i++)
      work(i);  
    for(int k=1;k<=n;k++)
    for(int i=1;i<=len;i++)
    {
        if(f[k][i]>=10)
        {
            f[k][i+1]+=f[k][i]/10;
            f[k][i]%=10;
            if(f[k][len+1]>0)len++;
        }
    }
    for(int i=len;i>=1;i--)
      cout<<f[n][i];
    return 0;
}

by homi @ 2023-03-09 10:39:14

为啥用递归就超时呢 ,高精度加法反而可以过


by Miss_SGT @ 2023-03-18 00:34:31

直接递归时间复杂度特别高,应该只能做到n=10左右,你要么用递推,要么写记忆化


by homi @ 2023-03-19 07:08:22

@zhouchenqiao1 好的 谢谢


by Roger_Spencer @ 2023-03-20 09:25:08

高精度+滚动数组+dP

博客主页

源码

#include <bits/stdc++.h>

using namespace std;

#define LL long long

#define endl "\n"

const int N = 1e5 + 10;

const int M = 5510;

int dp[N];

vector<int> add(vector<int> &A, vector<int> &B)
{
    if (A.size() < B.size()) return add(B, A);

    vector<int> C;
    int t = 0;
    for (int i = 0; i < A.size(); i ++ )
    {
        t += A[i];
        if (i < B.size()) t += B[i];
        C.push_back(t % 10);
        t /= 10;
    }

    if (t) C.push_back(t);
    return C;
}

void solve()
{
    int n;
    cin >> n;

    if ( n == 1) 
    {
        cout << 1 << endl;
        return;
    }

    vector<int> A, B, C, D;

    A.push_back(1);
    B.push_back(1);
    for (int i = 2; i <= n; i ++ )
    {
        C = add(A, B);
        A = B;
        B = C;
    }

    for (int i = C.size() - 1; i >= 0; i -- ) cout << C[i];

    cout << endl;

}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);

    solve();

    return 0;
}

by wcy110614 @ 2023-05-21 11:19:12

普通递归的时间复杂度相当高,会计算很多重复的部分。

所以说你就要优化算法,要么用记忆化,要么就写普通的方法


|